The Maximum Hosoya Index of Unicyclic Graphs with Diameter at Most Four

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The smallest Hosoya index of unicyclic graphs with given diameter∗

The Hosoya index of a (molecular) graph is defined as the total number of the matchings, including the empty edge set, of this graph. Let Un,d be the set of connected unicyclic (molecular) graphs of order n with diameter d. In this paper we completely characterize the graphs from Un,d minimizing the Hosoya index and determine the values of corresponding indices. Moreover, the third smallest Hos...

متن کامل

On Harmonic Index and Diameter of Unicyclic Graphs

The Harmonic index $ H(G) $ of a graph $ G $ is defined as the sum of the weights $ dfrac{2}{d(u)+d(v)} $ of all edges $ uv $ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)}  $ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound $ dfrac{H(G)}{D(G)}geq dfra...

متن کامل

Trees with minimal index and diameter at most four

In this paper we consider the trees with fixed order n and diameter d ≤ 4. Among these trees we identify those trees whose index is minimal. © 2009 Elsevier B.V. All rights reserved.

متن کامل

The Maximum Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

The Balaban index of a connected graph G is defined as J(G) = |E(G)| μ+ 1 ∑ e=uv∈E(G) 1 √ DG(u)DG(v) , and the Sum-Balaban index is defined as SJ(G) = |E(G)| μ+ 1 ∑ e=uv∈E(G) 1 √ DG(u)+DG(v) , where DG(u) = ∑ w∈V (G) dG(u,w), and μ is the cyclomatic number of G. In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n v...

متن کامل

Some extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index

The Hosoya index of a graph is defined as the total number of the matchings, including the empty edge set, of the graph. The Merrifield-Simmons index of a graph is defined as the total number of the independent vertex sets, including the empty vertex set, of the graph. Let U(n,∆) be the set of connected unicyclic graphs of order n with maximum degree ∆. We consider the Hosoya indices and the Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11081034